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FOREWORD

This final report documents studies conducted by Rocketdyne
Division, Rockwell International, for Marshall Space Flight
Center of the National Aeronautics and Space Administration
under contract NAS 8-27608. The NASA Technical Project Mana-
ger was Mr. T. W. Winstead., The studies were conducted during
the period of 30 June 1971 through 27 April 1973,

ABSTRACT

The purpose of this program was to analyze, test, and eval-
uate methods of achieving rapid-start of a liquid hydrogen
feed system (inlet duct and turbopump) using a minimum of
thermal preconditioning time and propellant, The program

was divided into four tasks.

Task I includes analytical sutdies of the tesfing conducted
in the other three tasks. Task II describes the results

. from laboratory testing of coating samples and the success-
ful adherence of a KX-635 coating to the internal surfaces of
the feed system tested in Task IV, Task III presents results
of testing an uncoated feed system. Tank pressure was varied
to determine the effect of flowrate on preconditioning. The
discharge volume and the discharge pressure which initiates
opening of the discharge valve were varied to determine the
effect on deadhead (no through-flow) start transients. Task
IV describes results of testing a similar, internally coated
feed system and illustrates the savings in preconditioning

time and propellant resulting from the coatings.
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SYNOPSIS

This program was undertaken to demonstrate the feasibility of using coatings
applied to the wetted surfaces of a liquid hydrogen feed system (inlet line and
pump) as a method of reducing the time and propellant required to thermally con-
dition the pump before rotation. Extensive analytical studies preceded both
testing of material samples in the laboratory and testing of the full-scale un-
coated and coated feed systems in appropriate test facilities. The purpose of
these studies was to generate parametric data as a means of establishing the in-

fluence of parameter variations to guide subsequent testing.

The chilldown characteristics of several coatings were experimentally determined
using small samples. These samples used titanium, CRES, and aluminum as the base
material; each with several different types and thicknesses of coatings, Tests
included chilldown from ambient conditions by immersing solid cylinders in liquid
nitrogen and hydrogen and flowing liquid hydrogen through cylindrical tubes,

The coatings, when judiciously used, caused the heat energy stored in the base

material to be removed by the coolant either faster or slower than for an uncoat-

ed metal, depending on the coating material and thickness, and the mass flow

velocity. For low mass velocities, thin coatings can be used to increase heat
transfer rates and reduce required chill time, such as on a pump impeller, and
thick coatings can be used to obtain a rapid surface chill, while insulating or
reducing the heat transfer rates of the base material, such as on larger com-

ponents like pump housings and propellant lines.

For high mass velocities, the trends are the same as just described, but the thin
coatings result in little, if any, reduction in chill time from the value for an

uncoated metal.

Based on these heat transfer tests and adherence characteristics as determined by

stressing coated samples, a KX-635 coating was selected for the feed system to

be tested. A thin, 0.005-inch coating was selected for the rotating pump parts

to provide rapid thermal conditioning of the metal and preclude abnormal blade

stress conditions during rotation after minimal chill. A thicker, 0.020-inch
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insulative coating was selected for the stationary pump parts and inlet line to

minimize the heat transfer rate and its effect on the propellant conditions.

The procedure for selecting the appropriate coating thickness for liquid hydrogen
applications is shown schematically in Fig. i. First, it is necessary to
establish the desired effect of the coating, i.e., enhancement or insulation,
This decision is influenced by the mass of the base metal and stress considera-
tions. For massive components, the objective of reducing the heat flux to a low
level in a short time period is not practical with an enhancement coating. Also,
if rotating components such as inducers and impellers are stress-designed at low
temperatures and design limits would be exceeded during rotation at higher metal

temperatures, use of insulating coatings is precluded.

For a desired chill factor, the coating Biot number (Ng;) is selected from Fig.
ii. The range of values corresponds to the experimental data obtained under the
Rapid Start Program. The chill factor () should be selected as low as practical
for enhancement and relatively high for insulation. Knowing the coating thermal
conductivity (k) and the film coefficient (h) for the uncoated surface, the coat-
ing thickness (t) can be selected from Fig. iii for the selected Biot number.

The procedure then becomes iterative depending on the suitability of the selected
coating thickness, This decision is based on the compatibility of the thickness
with application techniques and adherance qualities., Unless limiting Biot numbers
for the desired effect (enhancement or insulation) have been reached, the de-
sired chill factor must be altered and a new Biot number selected. If limits

have been reached, it is necessary to change the desired effect,

Thermal conditioning and turbopump start tests were conducted with both uncoated
and coated feed systems consisting of inlet lines designed for the Centaur stage
and RL-10 "hydrogen turbopumps™ (turbopumps with the oxygen pumps removed).
Start tests were conducted with the uncoated system to determine deadhead (no

through-flow) start characteristics. The system's start transient was found to

be insensitive to the value of discharge pressure used to initiate opening of the

discharge valve, but was dependent on the discharge volume. Deadhead starts were

- successfully achieved only with very large discharge volumes.

R-9273

viii



V.

DESIRED EFFECT?

ENHANCEMENT
OR
iNSULATION

{

SELECT COATING BIOQOT NUMBER (NBi)

FiG. Ti

DES IRED
CHILL
FACTOR (¥)

COATING
THERMAL
CONDUCTIVITY

(k)

SELECT COATING THICKNESS (t)

k

3

B

M/A

UNCOATED-
SURFACE FiLM
COEFFICIENT (h)

oR |
MASS FLUX (M/A)

FIG. Tii

!

ACCEPTABLE COATING THICKNESS? (t)

YES

NO

LIMITING BIOT
NUMBER FOR
DESIRED EFFECT

REACHED?

Figure 1.

v

R-9273

ix

HO
YES

Procedure for Selecting Coating Thickness



€.76-d

CHILL FACTOR (¥)

3.0

INSULATION-—)/

0 i |

0 1.0 2.0

COATING B10OT NUMBER (N

Figure ii.

3.0 4o 5.0

Bi)

Coating Biot Number Selection

7.0



UNCOATED SURFACE FILM COEFFICIENT, h, BTU/IN’-SEC-R

2x10-3

hcllD-3

leo'“

2x10~0
Ix10™%

5x10.5

2x10-3

1x1073

ZxIO'A

1x1074

5x10°

»001  .002 .005 L0100 .20 .050

COATING THERMAL
8107 NUMBER (NB[) CONDUCTIVITY

k=2x10°
(BTU/IN-SEC-R)

L1 L ELLRLE

A

1.0
0.5

0.2
0.1

FILM
BOILING

k=1x10"°
(BTU/ IN=SEC-R)

TETE W FTTIT R

1.0
0-5

0.2
0.1

FILM
BOILING

k= 0.5 x T
(BTU/ IN-SEC-R)

1.0
0.5

6.2
0.1

FILH
BOILING

1

COATING THICKNESS, t, IN.

Figure iii. Selection of Coating Thi

R-9273

xi

-100

ckness

MASS FLUX, M/A, LB/INZ-SEC



Comparative thermal conditioning tests demonstrated the advantages that can be

realized by coating the wetted surfaces. The time and propellant weight required

to achieve saturated liquid at the pump exit with the coated system were 20

seconds and 20.6 pounds, as compared to 29 seconds and 35 pounds for the uncoated

system with a similar supply pressure and under similar initial conditions.

In order to determine the minimum chilldown required to achieve a successful
start, a series of three tests was conducted with different degrees of precondi-

tioning. Although not actually demonstrated, the results support the conclusion

that the system could be started from ambient initial conditions after 10 seconds

of chilldown for test conditions used, which were different from those used in

the chill tests mentioned above. The two least chilled cases were unsuccessful,

but this was most probably due to sequencing peculiar to the test facility.

During testing of the coated feed system, a total of 1l tests were run for over
680 seconds, of which 10 tests and 450 seconds were with the pump operating.

Post-test inspection revealed excellent adhesion gqualities of the selected

coating.
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INTRODUCTION

The purpose of this program was to analyze, prepare, and test a liquid hydrogen
feed system (inlet duct and turbopump) that can achieve rapid starts with mini-
mum thermal preconditioning. The results can be applied to increase the payload
potential and mission flexibility of the Space Shuttle vehicle. These feed
systems would be particularly attractive in a cryogenic auxiliary propulsion
system (APS), where minimum start times after various coast periods are required

and also for Space Tug propulsion systems.

Propellant feed system chilldown time and expended propellants can be reduced
through the use of internal coatings. Previous contracted efforts (NAS8-20167
and NAS8-20324) have demonstrated this improved chilldown efficiency, as well as
material compatibility and application techniques. Rapid pump starts, particu-
larly in an APS application, suggest turbomachinery designs and controls that
provide a '"deadhead" (no through-flow) start capability. The objective of this
program was to develop data on a typical auxiliary propulsion hydrogen feed
system to determine the interrelationship between feed system coatings, chilldown
time, deadhead starting, minimum start times, feed system geometry, and control

functions.

As a demonstration of the benefits to be derived from using coatings on future
cryogenic space propulsion systems, an analysis was made for an assumed Space Tug
synchronous equatorial deployment mission. This mission includes eight separate
burns over a twenty-eight hour period. Test data indicates that a reduction of
25 percent on the total chill propellant can be achieved by using coatings on low
thermal conductivity materials such as titanium and CRES in advanced engine
hydrogen turbomachinery. Savings of 50 percent for similar oxygen turbopumps are
projected based on liquid nitrogen test data (liquid nitrogen and liquid oxygen

have similar heat transfer properties).

R-9273
1



A summary comparison of propellant chill requirements for coated and uncoated
pumps is presented in Table 1. Coatings reduce the required propellant weight
by 213 pounds when used in an overboard dump chilldown mode (no propulsive
thrust) which corresponds to approximately 190 pounds of payload (3% of nominal),
60 pounds of inert weight (15% of engine weight), or 1.9 seconds of specific im-
pulse. Lesser advantages are realized if the propellants are utilized in some

other manner such as engine idle-mode operation.

TABLE 1. TOTAL MISSION CHILL REQUIREMENTS

COATED PUMPS UNCOATED PUMPS
Oxygen, 1b 191 382
Hydrogen, 1b 87 109
Total, 1b 278 491
Savings, 1b 213 Reference
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SUMMARY AND CONCLUSIONS

The objectives of the work conducted under this contract were to analyze, test,
and evaluate internal coatings as a method of achieving a rapid-start of a liquid
hydrogen feed system (inlet line and turbopump). The advantages to be realized
from a rapid-start are reduced thermal conditioning time and propellant use. The

program was divided inte four tasks; each will be summarized separately.
TASK I: ANALYTICAL STUDIES

The first task included analytical investigations titled Thermal Analysis, Turbo-
machinery Analysis, System Evaluation, and General Dynamics Inlet Line Analysis.
The Thermal Analysis studies consisted of an investigation and prediction of the
chilldown characteristics of the coated laboratory samples tested during the second
task. These samples used titanium, CRES, and alumimum as the base material and
several different types and thicknesses of coatings. Three types of tests were
simulated, including immersion of solid cylinders in liquid nitrogen and hydrogen,
and liquid hydrogen flow through cylindrical tubes. For the simulated immersion
tests, the heat transfer rates were significantly increased when relatively thin
coatings were applied. The time required for the coated metal cylinders to reach
equilibrium temperatures was reduced by factors of up to 3.7 and 2.35 in the
nitrogen and hydrogen baths, respectively, when compared to the uncoated cylinder
data. These results agreed well with subsequent testing in the second task. In
both the nitrogen and hydrogen immersion simulations, coating thicknesses of less
than approximately 7.62 X 10™* m (0.030 inch.) did enhance the heat transfer rate

rather than retard it.

Evaluation of liquid hydrogen flow through cylindrical tubes showed that chilldown
of the base material can either be enhanced or retarded depending on the hydrogen
flowrate and the coating thickness. These trends were substantiated during test-
ing in the second task. As an illustration of these trends, analysis of an alumi-
num cylinder spray-coated with KX-635 indicated that a coating thickness of 1.78 x

10'4 m (0.007 in.) reduced the time required to achieve a specified fluid tempera-

ture by a factor of 1.35, and a thickness of 4.32 x 10-4 m (0.017 in.) increased
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the chill-time by a factor of 2.66 for a flowrate of 1.89 x 10-3 m3/s (30 gpm).

As indicated, the function of the coating reverses from that of enhancing the heat
transfer rate to that of acting as an insulator as the thickness is increased.

The effect of increasing the flowrate is to reduce the chill-time, e.g., for the
coating thickness of 1.78 x 10 -4 m (0.007 in.) just mentioned, the chill- time is
reduced by a factor of 2. 05 as the flowrate is increased from 1.89 x 10~ ms/s

(30 gpm) to 1.26 x 10 " m /s {200 gpm}.

The turbomachinery Analysis study consisted of using a simplified model to estimate
start characteristics of tﬁe RL-10 turbopump under deadhead (no through-flow) con-
ditions. During a deadhead-start, accumulative heating of the trapped fluid due
to pump inefficiency significantly affects the developed discharge pressure. Dur-
ing this study the discharge pressure transient was predicted assuming a fully-
chilled pump, a fixed mass of trapped fluid, and a uniform fluid density equal to
the value at the discharge. Results show that the discharge pressure peaks at a
value of 4.55 x 106 N/m2 (660 psia) when the rotational speed is 85 percent of the
design value. As the speed continues to increase, accumulative heating reduces
the fluid density enough to cause the discharge pressure to decrease. Conse-
quently, it would be necessary to allow through-flow to be initiated during the
transient prior to reaching a discharge pressure of approximately 4.55 x 106 N/m
(660 psia).

The System Evaluation study consisted of using a more detailed analytical model of
the hydrogen feed systems, tested in the third and fourth task, to specify exper-
imental parameter values, establish a start sequence, and predict the experimental
results. The heat-transfer from the duct and pump, the discharge volume, and the
discharge pressure which initiates opening of the discharge valve were varied
parametrically to determine their effects on deadhead-start. The effect of the
size of the discharge volume is to shift the start-transient with respect to the
pump performance map. Small volumes result in low flows and flow reversals very
early in the transient, while large volumes result in high flowrates and a break-
down in developed-head because of cavitation For an intermediate size discharge

volume of 6.17 x 10 -2 3 (2.18 cu ft ), backflow oceurs if the discharge valve is

‘scheduled to open at a pressure greater than approximately 4.14 x 106 N/m (600
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psia). The pump does not recover from backflow because the pressure of the high
energy reverse flow is reduced and the fluid is vaporized as it flows to the inlet
duct. Since a very detailed heat transfer model was used in the Thermal Analysis
studies, the start transient model contained a simplified approach consisting of

a specification of the heat transfer rate at the design flowrate and variations
programmed proportional to the square root of the flowrate. The maximum allowable
total heat-transfer during the start-transient for an initially warm feed system
corresponded to a specification of approximately 1.64 x 105 joules/second (155
Btu/second) at the design flowrate. This amount of heat-transfer shifted the pump
transient performance to the threshold of breakdown in the developed-head due to
cavitation. With this schedule of heat-transfer and a discharge volume of 6.17 X
1072 p° (2.18 fts), backflow through the pump occurred if the discharge valve was
scheduled to open at a pressure greater than 4.83 x 106 N/m2 (700 psia). The
shift to the right of the transient performance on the pump map and the resulting
higher efficiency accounts for the warm pump being able to operate with higher
back pressures than the preconditioned one. For the range of parameters considered,
propellant heating due to pump inefficiency is at least as important as the chill-

down heat-transfer in affecting the deadhead start transient.

The General Dynamics Inlet Line Analysis was conducted by their Convair Aerospace
Division. A literature survey acquired current data relative to chilldown with
cryogenic fluids and the application of internal coatings to reduce chilldown re-
quirements. The thermal analyzer program developed by the Knolls Atomic Power
Laboratory was modified and used to determine the effects on line chilldown of (1)
iine material, (2) line diameter, (3) coating material, (4) coating thickness,

(5) line pressure drop, and (6) fluid flowrate. Thermodynamic models of both the
uncoated and coated lines tested in the third and fourth tasks were developed and
used to determine the effect of variations in major parameters. These studies
confirmed the results of the Thermal Analysis studies and laboratory testing of

sample cylindrical tubes in the second task.
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TASK II: LABORATORY SAMPLE TESTS

The purpose of the second task was to test the analytically derived results ob-
tained in the Thermal Analysis studies conducted during the first task and to
select the optimum coating and method of application for use on the inlet duct
and pump that was tested in the fourth task. A KX-635 coating was selected

on the basis of: (1) its heat transfer characteristics as determined by immer-
sion of coated solid metal cylinders in liquid nitrogen and hydrogen, and by
liquid hydrogen flow tests in internally coated cylindrical tubes; (2) its adher-
ence to metals as determined by stressing coated samples; and (3) its corrosion

resistance quality based on the hydrogen flow tests. The recommended inlet time
4

and pump coating thicknesses were 1.27 x 107" m (0.005 in.) for rotating pa

and 5.08 x 107" m (0.020 in.) for stationary parts. Both spray and fill-and-drain
applications were recommended depending on the accesibility of specific areas to
be coated. Examination of the coated experimental feed system at the completion
of testing in the fourth task revealed excellent adhesion qualities after more

than 7-1/2 minutes of turbopump operation.

TASK III: UNCOATED FEED SYSTEM TESTS

During the third task, a test stand was constructed and instrumented for testing
both the uncoated and coated hydrogen feed systems. The feed systems consisted

of an inlet line, manufactured by Convair Aerospace Division of General Dynamics
for the Centaur stage, and an RL-10 hydrogen turbopump (turbopump with oxygen
pump removed), which were supplied by NASA. Twenty-three tests were conducted
with an uncoated feed system to check out the facility and obtain data on thermal
conditioning and deadhead turbopump starts. During the pressure-fed chill tests,
the hardware was at ambient initial conditions. The inlet pressure was varied
between 1.83 x 105 and 5.17 x 105 N/m2 gage (28 and 75 psig) and the time required
to achieve saturated liquid at the pump exit varied from 59 to 29 seconds, respec-
tively. Saturated liquid was evidenced at the interface between the inlet duct
and pump in 43 seconds for a pressure of 1.93 x 105 N/m2 gage (28 psig) and 20
seconds for a pressure of 5.17 x 105 N/m2 gage (75 psig). Although flowrate was
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a function of the inlet pressure, the total weight of hydrogen required to chill
the feed system was approximately 1.5 kilograms (33 pounds) and virtually inde-

pendent of pressure and flowrate.

The turbopump start transient tests were conducted with the discharge valve closed,
i.e., under deadhead conditions. The start transients were insensitive to the
value of pump discharge used to initiate opening of the discharge valve. There

was no effect that could be attributed to trigger pressures between 3.55 x 106

and 2.17 x 106 N/m2 (515 and 315 psia) for the three unsuccessful starts with

the intermediate sized downstream volume, or to pressures between 4,24 x 106 and
2,17 x 106 N/m2 (615 and 315 psia) for the three successful starts with the largest
volume. The turbopump deadhead start was dependent on the volume between the pump
discharge and the discharge valve. Successful deadhead-starts could not be accom-
plines with volumes of 0.0014 and 0.024 m3 {0.05 and 0.85 fts), but they were suc-
cessful with a volume of 0.098 m? (3.45 ft3).

TASK IV: COATED FEED SYSTEM TESTS

During the fourth task, 11 tests were conducted with the coated feed system to
determine thermal conditioning characteristics and steady-state pump performance
for comparison with the uncoated feed system data, and also to obtain data on
starting the pump when only partially chilled. Both the chill-time and total pro-
pellant weight were reduced by coating the wetted surfaces of the inlet duct and
pump. For an inlet pressure of 5.03 x 10S N/m2 gage (73 psig), the time and pro-
pellant weight required to achieve saturated liquid at the pump exit with the
coated feed system was 20 seconds and 9.3 kilograms (20.6 pounds), as compared to
29 seconds and 15.9 kilograms (35 pounds) for the uncoated system with an inlet
pressure of 5.17 X 105 N/m2 gage (75 psig). The values for achieving saturated
liquid at the pump inlet were 14.5 seconds and 6.4 kilograms (14 pounds) for the

coated system, and 20 second and 10.9 kilograms (24 pounds} for the uncoated system,

Coated feed system tests were conducted to obtain data on steady-state performance.

The steady-state developed head of the coated pump was approximately 20-percent
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less than that of the uncoated pump for a given flow and rotational speed. No
investigation to determine the cause of this performance loss was made, but it
is possible that the coatings reduced the flow areas within the pump, especially
the discharge flow area, and therefore, altered the fluid velocity vectors in the

pump stages.

Turbopump start tests were conducted with an inlet pressure of 4.48 x10° N/m2 gage
(65 psig) and three different degrees of preconditioning. Only the most chilled
condition resulted in a successful start. However, a thorough analysis of the test
results indicated that the other tests were probably unsuccessful because of pump
inlet propellant conditions resulting from manual sequencing of a discharge valve,

rather than being due to a lesser degree of prechill. This scquencing cccurred
approximately 1.5 seconds before turbopump rotation and resulted in a lower chill
flow and higher fluid temperature at the pump inlet when rotation was initiated.
It is significant that propellant conditions after sequencing the valve for the
successful start were nearly identical to the conditions that existed before se-
quencing the valve for an unsuccessful start with 10 seconds of preconditioning.
Although not demonstrated, it is therefore reasonable to expect that the coated
feed system could be started from ambient initial conditions after 10 seconds of

preconditioning.
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TASK I: ANALYTICAL STUDIES

This task is divided into four subtasks: Thermal Analysis, Turbomachinery
Analysis, System Evaluation, and General Dynamics Inlet Line Analysis. The
thermal analysis study was an in-depth evaluation of chilldown times for a variety
of base materials and surface coatings. Both analytical and experimental data were
obtained for samples of titanium, CRES, and aluminum. The turbomachinery analysis
investigated startup of the RL-10 turbopump under deadhead (no flow) conditions.
During deadhead starts, propellant heating may become a problem because the heat
input is rejected only to the trapped propellant within the pump, and therefore

causes a large heat input per unit mass of propellant.

Under the system evaluation subtask, an analytical model of the experimental feed
system was developed. This model was used to determine the effects of chilldown
heat transfer on turbopump deadhead start. The heat transferred into the hydro-
gen from the inlet duct and pump, and the discharge pressure required to initi-
ate opening of the discharge valve were varied parametrically. Both a precondi-
ticned and warm feed system with various downstream duct volumes were analyzed,
The inlet line analysis, which was conducted by Convair Aerospace Division of
General Dynamics, used the modified thermal analyzer program. This analysis in-
cluded the following effects on line chilldown: (1) line material, (2) line diam-
eter, ' (3) coatings, (4) coating thickness, (5) line pressure drops, and (6) fluid

flowrates, These four subtasks are discussed in detail in the following sections,

THERMAL ANALYSIS

The pump thermal analysis study consisted of the evaluation and prediction of
chilldown of the samples tested during Task II: Laboratory Sample Tests. In
addition, a computer analysis model of the RL-10 hydrogen pump was formulated

for prediction of the chilldown results acquired during Task III: Uncoated Feed
System Tests, and Task IV: Coated Feed System Tests. The work on the liquid ni-
trogen (LN;) immersion cylinder chill analyses, the liquid hydrogen (LH,} immer-
sion cylinder chill analyses, the tubular collar LH, flow chill analyses, and the

RL-10 turbopump chill analysis approach are discussed below.
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Thermal Analysis of LNp Immersion Chilldown of Coated

and Uncoated Metal Cylinders

Figures 1 through 8 show the immersion testing chilldown data for aluminum,
CRES, and titanium. The instrumented cylinder samples tested in LN, are described
in Task II: Laboratory Sample Tests. The results are presented at this time for

comparison with the analytical studies.

Computer Chilldown Model. The DEAP-1 program (Ref. 1), with 32 and 22 nodes,

was used for predicting the chilldown characteristics of bare and coated metal
cylinders (heat transfer rods) in LN, and LH;, tested by immersion in Task II,
The nodal sketches for insulated (coated) and noninsulated metal cylinders are
~shown in Fig. ¢ and 10 . The analytically predicted data were found to compare
well to experimental data. Typical analytical results obtained for coated
and bare cyclinders, with and without external cork insulation, are described

below,

LNy Chilldown of Bare Titanium Cylinder. Figure 11 illustrates the computer model

chilldown of the titanium cylinder based on equal film coefficients on all three
surfaces of the cylinder throughout the film and nucleate boiling range. The ti-
tanium cylinder is shown to enter the LN; nucleate boiling range at about 50 sec-
onds, with only some thermal gradient through the cylinder; with chillidown

complete at about 65 seconds.

LNy Chilldown of Bare CRES Cylinder. Figure 12 illustrates the analytical chill-
down of the bare CRES cylinder in the LN, bath. The break point between film and

nucleate boiling is shown at 80 seconds, with the chilldown nearly complete at
90 seconds. A lesser differential temperature throughout the cylinder is noted

as compared to titanium as a result of a higher thermal conductivity.

LN2 Chilldown of Bare Aluminum Cylinder. Chilldown analysis simulation of the

aluminum cylinder is shown in Fig. 13. The nucleate boiling onset is shown at

50 seconds, with chilldown essentially complete at 60 seconds.
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LN, Chilldown of Cork Insulated Titanium Cylinder. A substantial increase in the

chilldown time for the titanium cylinder with the cork insulator is shown in Fig.
14, Nucleate Boiling onset is shown at 450 seconds with chilldown complete at 700

to 800 seconds.

LN» Chilldown of Cork Insulated CRES Cylinder. Figure 15 illustrates similar re-

sults for the CRES cylinder. Nucleate boiling onset occurs at 640 seconds with
chilldown complete at about 800 seconds,

LN2 Analytical to Experimental Chilldown Comparison. Reduction of the LN, test

data on the heat transfer cylinders was completed and a comparison of the experi-
mental and analytical predicted results was made. Figures 6 and 14 illustrate
the computer predicted analytical LN2 chilldown time comparison for titanium with
different types of coatings and thicknesses. As illustrated, all coatings except
the 3.81 x 10°% m (0.015 in.) FEP + microballoon coating were shown to speed up
the heat removal from the titanium base material with a 2 to 1 time reduction for
the best coating which is the FEP 5.08 x 10'—5 m {0.002 in.) coating.

Uncoated Cylinder Analytical Model., Based on LN2 immersion test data, comparative

coating thicknesses to enhance the chilldown were compared by defining a simplified

chilldown model shown below:
T - T
W LN2=e_(hCBT)
Twi_TLNz e

2+ L
B = ‘“‘TTEL cylinder without cork insulator

8 =(%) cylinder with cork insulator

For purposes of comparing the time it takes to achieve a nearly complete chill, it

was assumed that:
2 _ =2.0 _
T = e = 0.135

R-9273
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This corresponds to a wall temperature of 99.8 K (-280 F) or 87 percent of chill
completion. For the simple model, this relates to the critical time, Tcz, as

follows:

39.4 m (1 in.-l) cork insulator

2pcC
Te, = = 304 m ! (10 in.”1) with k
2 B 8 B m - (10 in. 7) without cor

where the coating effect is lumped into the average chilldown film coefficient, hc'

Table 2 illustrates the comparative ratings for the various metal base and coat-
ing materials used. The uncoated base sample testing indicated titanium to have
the shortest chill, and CRES the longest chill, Coatings were found to have the
greatest effectiveness in the 5.08 x 10’5 to 1.27 x 10_4 m (0.002 to 0.005 in.)
thickness range with 1.27 x 10" m (0.005 in.) thickness providing the best chill
rate for most materials. On the average, the 1.27 x 1074 m (0.005 in.) thick
Kel-F material proved to be the most advantageous as shown. However, instances

are shown where FEP and TFE are better choices for more rapid chills,

Comparison of Analytical and Experimental Chilldown of Kel-F Coated Cylinders in

LNy. Comparisons of the analytical and experimental LN, chilldown of the coated
cylinders were completed. Typical graphs are shown in Fig. 16 and 17 for aluminum
and titanium with a Kel-F 1.27 x 10-4 m (0.005 in.) coating. As shown by the ex-
perimental dotted lines, the effective film coefficients in the film boiling ranges
are more than 4 times the uncoated values. In addition, for some of the rapid
chilldown cases, alteration of the nucleate boiling range to a higher subcooling

difference appears to occur.

Thermal Analysis of LH2 Immersion Chilldown of Coated

and Uncoated Metal Cylinders

Figures 18 through 23 illustrate the reduced chilldown data for immersion testing
of aluminum, CRES, and titanium instrumented cylinder test samples in an LH2 bath,

as described in Task II,

R-9273
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TABLE

2. COMPARATIVE COATED CYLINDER CHILL TIME (SECONDS)
RATED TO 99.8 R (-280 F) IN LN2

5.08x10 5w |5.08x10"5m |1.27x107%m | 1.27x207%n | 3.81:107%m 5.08x10"%m | 3.81x10"%m
vaterial| Cork  |(0.000 £n.)[(0.002 in.) |(0.002 in.) [(0.005 in.) [(0.005 in.} [(0.015 in.)|(0.020 in.} (0.150 in.)
of Base |Insulator Base FEP TFE KEL-F * FEP FEP KEL-F KEL-F
CRES - Yes 710 500 240 415 445 775 705 .
Aluminum|  Yes 445 275 295 215 120 625 375 550
Titanium| Yes 455 230 390 425 400 645 330 -
CRES No 87.5 48 25 29.5 | 9.8 125 62.5 .-
Aluminun | No 71.5 37.5 37,5 14 -- -- 55 -
Titanium| No 46 30.5 23 20.5 18,5 54.5 51 --

NOTE: Shortest chill time in italics

LH2 Analytical Chilldown Study. Cases for the LH2 chilldown of

and CRES cylinders were modeled on the digital computer.

film coefficients, comparisons of chilldown for both the corked

the test Al, Ti,

Based on preliminary LH,

test cylinders of Ti, Al, and CRES were compared for chilldown times.

shows typical samples.

and uncorked (bare)

Figure 24

Figures 25 through 27 illustrate the analytical chilldown times for the bare test

cylinders. FiguresZS through 30 illustrate the predicted chilldown for the corked

test cylinders.

Chilldown times to 57 K (-358 F) are shown in Table 3

to the experimental test results.

TABLE 3. COMPARATIVE LH2 UNCOATED CYLINDER CHILLDOWN TIMES

compared

28

Experimental Analytical Discrepancy,
Time, seconds |Time, seconds percent
CRES - Corked 480 565 +18
Ti - Corked 340 430 +26
Al - Corked 317 338 +07
CRES - Uncorked 49.5 52.5 +06
Ti - Uncorked 28 37 +32
Al - Uncorked 29.5 33 +12
Average = 16
R-9273
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Additional analytical computer cases were run at a l6-percent increased LH2 film
coefficient, which brought the analytical results into close agreement to the

experimental test data.

Coated Cylinder Model. Both the simplified analytical model for chilldown and

the digital computer exact chilldown model were developed during the previous
studies. The simplified model used for the chilldown of the test metal c¢ylinders
without coatings (without the chilldown enhancement associated with the coating)

was previously expressed as:
D cylinder without

4L
2+ =
Tw B TLN2 hclBT B =( L ) cork insulator
L U
L

p C
2] ? B = 1 cylinder with

L cork insulator

A similar model developed for the insulated cases with coatings was developed:

TW - TLN2 ] hclwﬁr
T -T._|"¢ \DpcC_

wi LN2 P

where ¢ is a chilldown enhancement ratio

The Biot number of the coating is based on the reference film coefficient hc

for the uncoated cylinder and the coating thickness to conductivity ratio.

hc t
_ 1
B.. =| -
bl1 ( kc )
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Material chilldown enhancement over the uncoated case occurs when ¢ > 1.0 and
chilldown retardation results when § < 1.0. At the ¥ = 1 point where chilldown

enhancement and retardation are divided:

Figure 31 illustrates the effect of coating Biot number versus enhancement factor.
As shown, the Biot number of the coating must be in the < 0.5 range in order to

provide any appreciable chilldown time enhancement. For large NBi values the

fast chilldown is obviously degraded.

Based on the levels of LN2 film boiling, LH2

vection shown in Fig. 32, for a mean coating conductivity of 0.075 J/m-s-K

(1 x 10°°

10"4m (0.010 inch) appears optimum. For LH, film boiling, shown with the atten-

film boiling, and LH2 forced con-
Btu/in-sec-R) for LN2 film boiling, a thickness of approximately <.54 x

dant higher film coefficient, an 1.52 X 10-4 m (0.006 inch) coating appears op-

timum. For the respective higher film coefficient levels for 127, 633, and 1266
kg/m%-s (0.1, 0.5 and 1.0 1b/in°-sec) LH,
thicknesses required approach the 2.54 x 10-5m (0.001 inch) range.

forced convection conditions, coating

Comparison of Coating Effects in LN

) and LH2' Based on a chilldown time compar-
ison to ehz'0 or chill to within 13.5 percent of the final temperature value,

comparisons were made with both the LN, and LH2 bath chills, with enhancement fac-

2
tors for both the corked and uncorked conditions. As shown in Table 4 for the
corked samples tested, time enhancements of 1.5 to 2.4 for the LH, bath and 1.6

2
to 3.7 for the LN2 bath were obtained.

Chilldown enhancement factors for the samples without the cork insulation are
shown in Table 5. Coatings with thicknesses in the range of 5.08 x 10-5 to 1.17
x 10"%n (0.002 to 0.0046 inch) side thickness were found to have the highest chill-

down enhancement ¥ values for the LH2 chilldowns.
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TABLE 4. LH2 AND LN2 CHILLDOWN COATING ENHANCEMENT FACTORS

(CORKED CYLINDER SAMPLES)

Base End Thickness Coatigg wLH wLN
Material m, (inches) Material 2 2
Ti 1.55x10™% (0.0061) FEP 1.64 1.97
2.03x10”% (0.008) FEP 1.36 1.13
3.18x107% (0.0125) KEL-F 1.28 1.07
1.19x10"% (0.0047) TFE 1.26 1.17
0 (0) - 1.0 1.0
1.01x10™> (0.0397) FEP 1.04 | 0,707
1.02x10"° (0.0401) KEL-F 4.0% 1.37*
Al 1.91x10~% (0.0075) FEP 2.35 3.71
1.12x107% (0.0044) KEL-F 1.74 2.07
9.65x10™° (0.0038) FEP 1.28 | 1.62
3.56x107° (0.0014) TFE 1.12 1.51
0 (0) - 1.0 1.0
9.30x10"* (0.0366) KEL-F | 0.912 | 1.19
7.01x107% (0.0276 FEP 0.876 | 0.712
3.81x107° (0.150) KEL-F 0.768 | 0.808
CRES 6.86x107° (0.0027) TFE 1.53 1.61
1.50x10”% (0.0059) FEP 1.53 | 1.42
4.04x10"% (0.0159) KEL-F 1.53% | 1.71%
2.26x10"% (0.0089) FEP 1.33 | 1.59
0 (0) - 1.0 1.0
1.12x107° (0.0442) KEL-F 0.848 | 1.01
1.12x107° (0.0442) FEP 0.835.| 0.917

p values >1.0 fast chill

¥ values <1,0 slow chill

*Indicates questionable data due to bad thermocouple or inter-
mittent circuit readings.
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TABLE 5.

LH, AND LN, CHILLDOWN COATING ENHANCEMENT FACTORS

2

(UNCORKED CYLINDER SAMPLES)

2

End Thickness Side Thickness Coating Vi wLN
m, {(inches) m, (inches) Material 2 2
Ti 2.03x10™* (0.008) 1.07x10”% (0.0042) FEP 1.64 1.97
3.18x16°% (0.0125) | 1.17x10™% (0,0046) | KEL-F 1.27 2.25
1.19x10”% (0.0047) 5.08x10™> (0.002) TFE 1.12 2.0
1.55x10"% (0.0061) 5.84x10™° (0.0023) FEP 0.848*| 1.51
0 (0) 0 (0) - 1.0 1.0
1.01x10™° (0.0397) 3.71x10"% (0.0146) FEP 0.932 | 0.846
1.02x10°° (0.0401) 5.11x10”% (0.0201) KEL-F 0.667 | 0.902
Al 3.56x10"° (0.0014) 6.10x107° (0.0024) TFE 1.41 1.52
9.65x10™° (0.0038) 5.08x10™° (0.0020) FEP 1.40 1.52
1.12x10"% (0.0044) | 1.14x107% (0.0045) | KEL-F 1.00% | 4.07*
1.19x10"% (0.0075) | 1.17x10™% (0.0046) | FEP 1.34 | --
7.01x10”* (0.0276) 3.43x10" (0.0135) FEP 1.34 -
0 ) 0 (©) - 1.0 1.0
9.30x10"% (0.0366) | 4.72x10”% (0.0186) KEL-F 0.788 | 1.03
3.81x107° (0.150) - KEL-F - --
CRES 2.26x10"% (0.0089) | 9.65x10™° (0.0038) FEP 1.43 2.22
1.50x10"% (0.0059) 5.84x10™° (0.0023) FEP 1.15* | 1.82
6.86x10"° (0.0027) | 5.08x10"> (0.002) | TFE 1.01* | 3.5
4.04x10™% (0.0159) 1.00x10"% (0.0043) KEL-F 0.544*| 2.97
0 (0) 0 (0) - 1.0 1.0
1.1221073 (0.0442) 3.51z10"7 (0.0138) FEP 1.18 0.70
1.12x10"° (0.0442) 4.88x10"% (0.0192) KEL-F 0.744 1.40

Y values >1

P values <1

*Indicates questionable data due

readings

.0 fast chill
.0 slow chill

to bad thermocouple

R-9273
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film coefficients, the optimum coating
% to 7.62 x 10™°m (0.001 to

It is expected that with the higher LH,

thickness for enhancement will be in the 2.54 x 10

0.003 inch) range.

Comparison of LN, and LH  Coefficients. Based on the chilldown rates obtained for
A

2
the test cylinders with and without the cork insulators, the film coefficients ob-

tained were compared as shown in Fig. 33. Also shown are the General Dynamics an-
alytical LN2 boiling curve employed in the inlet line chillidown model. Good agree-

ment is shown in the LN2 heat flux conditions.

Thermal Analysis of LH2 Flow Chilldown of Coated and Uncoated Turbular Collars

The data from the experimental LH, flow testing of the coated and uncoated tubular

collars (made from aluminum, titaiium, and stainless steel)} at the three flowrates
of 1,89 x 107>, 5.05 x 10™°, and 1.26 x 10™%m 3/s (30, 80, and 200 gpm) were anal-
yzed. The flow data for the series of seven tests ranging from 211t01230kg/m2—s
(0.3 to 1.75 lb/inz-sec) mass velocity is illustrated in Fig. 34 through 40. Os-
cillations in flow about a mean level are seen as characteristic of chilldowns

with large vapor percentages formed. The chilldown temperatures vs time for the
aluminum, CRES, and titanium collars may be seen illustrated in Fig. 41 through

46 for the 1.89 x 10—3m3/s (30 gpm) flowrate. Figures 47 through 52 illustrate
the 5.05 x 10-3 ms/s (80 gpm) flowrate conditions and Fig. 53 through 58, the

1.26 x 10-2m3/s {200 gpm) flow condition.

Data Interpretation. The heat transfer data were reduced in terms of the time

taken to achieve chilldown temperatures to within 1/e2‘(13,5 percent) of the final
value of 20K (-423 F). 1In addition, the rating factor Yy which compares the equi-
valent enhancement on the hydrogen film coefficient over the chill period was de-
veloped for the ceoated and uncoated samples. Tables 6 through 8 illustrate the

summary results for the aluminum, titanium, and CRES wall materials respectively.
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